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Abstract
We present a new numerical method solving exactly Kirchhoff laws to
determine the effective ac and dc conductivity and the local field for large
scale 3D composites with any number of components. This method is an
extension of a previous one restricted to 2D and two-component composites. It
is much slower than the Frank and Lobb method for conductivity but calculates
in addition exactly the local field for 3D systems with large sizes (which was
not done by any previous method). The local field enhancement obtained
by this method is in good agreement with recent experimental results and is
two orders of magnitude lower than the values obtained by a widely used real
space renormalization group method. We further discuss some 3D example
calculations of impedance spectra and Cole and Cole diagrams for a three-
component sample as well as the local field at the surface plasmon resonance.

PACS numbers: 02.70.−c, 84.37.+q, 51.70.+f, 83.80.Ab, 78.20.−e

1. Introduction

Recently, there has been increasing interest in nonlinear optical properties of composite
materials due to field enhancement [1]. In addition, effective ac conductivity [2] and impedance
spectra have wide applications in various fields of science and technology [3] where materials
and composites can be modelled by RLC networks to characterize their dielectric and magnetic
properties. The use of Kirchhoff laws is the direct way to compute both impedance and local
field in such networks. However, this corresponds for large systems to matrices of sizes as
large as the square of the system size, rapidly exceeding computer capacity. Therefore, all
previous methods avoided directly solving Kirchhoff equations, using either approximations
or recursive methods but at the cost of losing information on the local field in each node
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(or equivalently the current in the branches). One of the rare methods yielding the local field
is the real space renormalization group (RSRG) technique, initially introduced by Bernasconi
[4], presenting the 2D network as a network of Wheatstone bridges which is reduced in each
step to a smaller network, up to obtaining only one branch with the effective impedance. The
inverse transformations yield the local field. This transformation changes each mesh of four
branches to a bridge of five branches, introducing twice an extra branch, which sensitively
affects the results. This method is very fast and useful for effective conductivity (or impedance)
calculations. However, although the local-field calculations were never checked, this method
was extensively used for the computation of local-field distribution, which was found very
large with significant consequences for Raman scattering and nonlinear optics [5]. Recent
experimental results on near-field investigations showed that local-field fluctuations are much
lower [6].

In a previous paper [7], we proposed a new numerical method for exactly solving Kirchhoff
laws for large 2D systems and yielding both impedance (or conductance) and the local field.
Although slower, this method provides exactly the same results as the Franck and Lobb method
[8] (which is a transformation from stars to triangles or vice versa in a network) for conductance
calculations as well as the critical exponents at the percolation threshold. We found the
maximum local-field enhancement two orders of magnitude smaller than the results obtained
by the RSRG method but in agreement with the recent near-field measurements. However,
most real materials are mainly three-dimensional and have more than two components, so that
all previous numerical interpretations of experimental results remain approximations. It is
then important to study such effects by investigating 3D networks numerically.

To this end, we expand in this paper our previous algorithm to three dimensional systems
with more than two components. The next section will be devoted to the description of the
method, while in section 3, we present some example calculations on both impedance spectra
and local-field distribution near the resonance frequency where this field is expected to be
larger.

2. Description of the method

Let us first recall the calculation method for 2D systems, and then expand it to three dimensions.
We consider a general RLC network where two different kinds of bounds (for instance LR

and C) are randomly placed in a 2D square lattice of size N × N with a concentration p
of one kind (e.g., the inductive one) which is at the bond percolation threshold (0.5), i.e.
the minimum concentration of metallic components leading to the appearance of a path
connecting the two ends of the sample [9]. We apply a voltage V (e.g., unity) between the
ends of the system (see figures 1). In general two shapes of the lattice are used in this problem:
one, shown in figure 1(a), in which the ends are parallel [8], and the other one, shown in
figure 1(b), in which the two ends are perpendicular [4, 5]. The second kind of lattice has only
two branches connecting the edges independently of the size of the system. Therefore, the
percolation threshold will be much smaller in this case. We limit ourselves, then, to the first
kind of lattice (figure 1(a)). A 2D lattice of size N has N2 + (N − 1)2 bonds and N(N − 1)

nodes.
The aim of this method is to determine the effective conductance σeff (which is the

current incident to the lattice if the conductances are normalized to an applied voltage 1 V) or
equivalently the impedance, and the local field in each node. We use to this end the Kirchhoff
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Figure 1. Sample of a 2D lattice of size 5. The voltage is put on (a) parallel sides and
(b) perpendicular sides.
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equations at each node i, j (the conservation law of the currents entering the node (i, j)):
∑
k,l

(Vk,l − Vi,j )σ
i,j

k,l = 0 (1)

where the sum is over the nodes of coordinates (k, l), nearest neighbours of nodes of
coordinates (i, j) having conductivities σ

i,j

k,l . For the nodes connected to the edges of the
lattice we replace the node potential Vk,l with the corresponding voltage (1 or 0). We have
then M equations (M = N(N − 1)) of M unknown potentials. We can rewrite equation (1) in
the following matricial form:

∼
�

→
V =




P11 P12 0 ... 0
P21 P22 P23 ... 0
... ... ... ... ...

... ... PN−1,N−2 PN−1,N−1 PN−1,N

... ... 0 PN,N−1 PN,N







V1

V2

...

VN−1

VN




=




S1

S2

...

SN−1

SN




. (2)

In this matrix equation, the matrix
∼
� is tri-diagonal symmetrical with (N − 1) × (N − 1)

elements Pi,j themselves matrices of dimension N × N consisting of combinations of the
branch conductivities corresponding to currents either in the line i (diagonal elements) or
coming to line i from the neighbouring lines (i ± 1) from equation (1). Therefore, only at
most three of the matrix elements Pi,j do not vanish in each line i. In equation (2) there are
N − 1 elements Vi which are vectors of size N. These elements are the potentials of the nodes
of the line i. The elements Si are vectors of the same size as Vi and vanish except for S1, which
corresponds to the edge at 1 V. The matrices P in equation (2) appearing in the diagonal region
of the mother matrix have also a tri-diagonal symmetric form while those outside the diagonal
region are diagonal. Indeed, from equation (1), the diagonal elements of Pi,i correspond to
the sum (with a minus sign) of the conductivities connecting each site of the line i to its
neighbours, while the off-diagonal elements are the conductivities of these neighbours.

To solve this matrix equation, it is impossible for large systems to handle directly the
mother matrix involved in equation (2) since it means for example for a lattice size 250 × 250
the use of a memory of about 125 Gigabytes for double precision complex variables. We then
partially re-linearize this equation so that we get a set of N(N − 1) matrix equations using the
matrices P and the vectors V and S described above:∑

j

Pi,jVj = Si. (3)

We solve this set of equations by the substitution method where, starting from the line
i = N , we obtain in each step the vector Vi related to Vi−1 up to the equation for i = 1 where
V1 is determined. We then use the inverse procedure to determine the other V vectors (and then
the local field). The effective conductivity is the sum of the elements of VN (see figure 1(a)).
This inverse procedure needs the storage of all the combinations of matrices involved during
the substitution steps. We store less than 3N matrices of size N × N to solve this set of
equations. Although the quantity to be stored is very large for large systems, it is N times
smaller than that stored by the use of the complete mother matrix. We still need a very
high memory for this storage. We store these matrices on a hard disk and the P matrices in
RAM memory. For example, for a sample size 250 × 250 we use a RAM memory of about
12 Megabytes and a computation time for one sample of about 18 min with a Pentium IV
2 GHz. Therefore, it is possible with this method to reach sizes as large as 250 × 250 on a
single PC computer with a reasonable computing time which was not possible with the usual
exact methods (except for the Frank and Lobb method which is restricted to the conductivity).
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In order to check our results we calculate systematically the incident and the outgoing currents
which are always identical up to the last decimal. This is not the case for other approximative
methods such as the RSRG method which do not show current conservation.

Let us now extend this method to three dimensions. The system is then composed of N
faces (planes) of size N × N . In this case, the network remains as in figure 1(a) for each
plane but with nodes connecting between planes. Therefore, if we use equation (1), the sum
of the currents entering a node is that of its neighbours in the same plane to be added to
its neighbours from the previous and the next plane. This means that Kirchhoff equations
remain the same as for 2D lattices, but we add for each node two links to its neighbouring
planes. In this case the matrix

∼
� in equation (2) becomes Pii in the new mother matrix and

represents the neighbours in the plane (instead of the line) and remains in the diagonal region
(N(N − 1) elements), while we add diagonal matrices at the two sides of the diagonal region
(Pii) representing the connections to the neighbouring planes (as for the lines in the 2D case).
Therefore, equation (2) applies in 3D systems but the mother matrix in the 2D case becomes
a block matrix in the diagonal region of the new mother matrix. In other words the new block
matrices in the new mother matrix are now tri-diagonal matrices in the diagonal region and
diagonal ones immediately at the two sides of the diagonal region. The same procedure stays
as it is for solving the new system of equations involving such new block matrices. We store
in this case less than 3N such new matrices in RAM memory while the intermediate matrices
are stored on the hard disk as for 2D matrices. The three-dimensional system can then be
mapped into 2D faces connected to one another by their nodes.

With this method, a calculation with a sample size 45×45×45 takes 5 h and uses 250 MB
RAM memory on a Pentium IV 2 GHz (in fact the computational time remains unchanged
with a weaker computer since the major time is used for storing large matrices in the hard disk
whose time access is of the order of the running time). Note that this time is proportional to
N2(N − 1) since the substitution process is used for the whole nodes. Therefore, if we double
the size, the computation time will be multiplied by 8.

The number of kinds of components to be used in the sample does not affect the
organization of the above described computation. For two components, we should generate
through the sample two kinds of elementary ac conductivities with probabilities p and 1 − p

respectively for each one. For three components, we generate three different conductivities
with probabilities p, q and 1 − p − q, and so on. The remaining calculations do not change.
We can then generate samples with any number of components.

Finally, it should be noted that this model is limited to frequencies where the electric field
wavelength is much larger than the size of the components. In the case of systems of around
centimetre size, one should be careful when using frequencies of the order of a GHz. Indeed,
in this case, the electric field should be viewed as a wave with transmission and refection
probabilities, and Maxwell’s equations are needed.

3. Results and comparisons

In the previous paper, we have extensively discussed the comparison of our method for ac
and dc conductivity in 2D systems with the Franck and Lobb (FL) method [8], and found
exactly the same results as well as the critical exponents. We have also compared the results
on the local field distribution with those of the RSRG method for 2D systems. Since the
literature provides numerical and theoretical data on 2D systems, we compare in this section
the frequency-dependent impedance and local field for 2D and 3D systems in order to explain
the experimental results.
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Figure 2. Frequency dependence of the real part (a) and imaginary part (b) of the impedance
versus frequency for a 3D system of three components R = 30 �, L = 400 mH and C = 1 µF,
with the same proportion (1/3). Three different sizes are used: 10, 20 and 30.

3.1. Impedance spectra calculations

Let us examine now as an example the impedance spectra, for three-component networks
where we have in each branch, with the same probability 1/3, either an R component of
value 30 �, a purely inductive component L of 400 mH or a purely capacitive component
of 1 µF. Such a proportion (1/3) is near the percolation threshold for three-dimensional
dc currents and is chosen because of the possibility of having an infinite cluster for each
component. The presence of a resistance and capacitance yields a relaxation frequency while
additional inductive components will introduce another characteristic frequency (the resonance
frequency).

In figure 2, we show for 3D systems the frequency dependence of the effective complex
impedance (its real and imaginary parts) for different system sizes and for a sufficiently large
frequency band where both characteristic frequencies are shown. The resonance frequency
ωres corresponds to the maximum of the real part of the impedance (or equivalently when the
imaginary part vanishes). The relaxation frequency ωrel corresponds to the minimum imaginary
part of the impedance in its capacitive region (where the imaginary part is negative). In these
figures, some resonance peaks appear for small sizes both in the real and imaginary parts of the
effective impedance. They correspond to local resonance and relaxation frequencies due to
the random organization of the components in each cell of the system. Indeed, in small
systems the components are inhomogeneously distributed in the sample so that the spectrum
is constituted of a set of resonances obtained from local configurations which influence
sensitively the spectra if their quality factor

(
Q = 1

R

√
L
C

)
is large. When the size increases,

the impedances decrease and the curves become smoother and the local resonances disappear
while only one characteristic frequency remains for each kind (ωres and ωrel) which seems not
to depend on the size (as shown in figures 2 for sizes 20 and 30).
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Figure 3. Cole and Cole diagram for the same parameters as in figure 2.

This smoothness for larger sizes is observed in the Cole and Cole diagram for this system
(see figure 3), where the loops corresponding to the local resonances shown for the size 10
disappear for larger sizes. It is important to note in this figure that the impedance seems not
to be affected by the size for very large or very small frequencies, while the dependence on
size is very significant for intermediate ones. The curve will saturate for very large sizes,
where effective medium theory predicts its behaviour. Note here that in 3D systems, we seem
to reach the effective medium behaviour more rapidly than for 2D systems (not shown here),
where some local resonances still appear in the spectrum even for sizes as large as 200 × 200.

The resonance frequency here is around 150 Hz for all the simulated 3D cases, while that
predicted by the effective medium theory for 2D systems is 251 Hz. We explain this difference
by the effective local topology of the 3D network, where the unit cell contains more R, L and C
components than in 2D systems. This local topology seems to allow the resonance frequency
to be about

√
3 lower than in 2D systems.

3.2. Local field

In this section, we show the local field distribution for 3D systems and compare it with the
results in 2D systems. In the previous paper [7], we have found that the local field is two
orders of magnitudes lower than the RSRG calculations predict. As discussed above, the
recent experimental results are in agreement with our results. It should be noted that the
experimental measurements are not on exactly two-dimensional systems, but the thickness
can sensitively affect the results. Therefore, it is interesting to examine the behaviour of the
local field for three-dimensional systems.

In figure 4, we compare the probability distribution of the local field for 2D (200 × 200)

and 3D (30 × 30 × 30) systems at the resonance frequency (corresponding to the vanishing
imaginary part of the effective impedance). For both systems, we use three components R,L

and C with the same proportion (1/3). The resonance frequency for the corresponding 2D
system is 245 Hz, while for a 3D system this frequency is 149 Hz. We see from this figure
that the most probable local field for 3D is one order of magnitude larger than in 2D. The
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Figure 4. The probability distribution of the local field for the same parameters as in figure 2 at
the resonance frequency for 2D systems (of size 200) and 3D systems (of size 30).

maximum value of the field seems to be slightly larger in 3D systems. This increase is due to
the existence of a larger resonating cell in 3D, where above a critical thickness it enhances the
field. Therefore, the field may be slightly enhanced in the previous near-field measurements
[6] if the films used are thicker, but the ‘hot’ regions remain still of the same magnitude as our
previous calculations. We note here that such ‘hot’ regions can be enhanced if we significantly
decrease the dissipation R.

4. Conclusion

We have presented (in the frequency range where Kirchhoff laws are applicable) exact
calculations of the complex impedance and local field for multicomponent three-dimensional
systems. This method allows the investigation of the behaviour of such quantities (particularly
the local field) for finite systems, while the existing models provided only the asymptotic
behaviour of the ac conductivity when the size is very large and the system is homogeneous.
This method then opens a way for new investigations of size effects as well as the
inhomogeneity or asymmetry of the system.
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